左眼看书 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

从赵光贵手中接过数据资料,徐川认真的翻阅了起来。

高能中子束的辐照问题,一直是全世界都在研究的世纪难题。

高能中子们最麻烦的地方并不在于自身携带的辐射,而是它可以与不同元素的原子核相撞。

中子与各种原子核相撞,会出现“中子激发”现象,产生不稳定同位素,使物质具放射性,损坏物质的结构。

简单的来说,有些像原本材料是一家四口,两个中子 两个质子组成了恩爱的一家人。

然后外来的高能中子撞到原子核后,像个小三一样强行的插入进去了,然后,家庭就破散不完美了。

目前科学界对中子辐照难题进行处理,一般都是使用中子慢化材料和慢中子吸收物质配合使用,来截停中子辐照。

其中中子慢化材料分重轻元素两种,重元素主要为常见的铅、钨、钡等金属材料。

它们可阻滞快中子,降低中子束的能量,使其成为慢中子。

而经过重元素慢化的中子,还需要轻元素再进一步慢化,才能被慢中子吸收物质吸收。

这一步主要是使用水、石蜡、聚乙烯等高聚氢的材料进行处理。

经过轻元素处理后的慢中子,才能被含锂或硼的材料,如氟化锂、溴化锂、氧化硼等材料彻底吸收消灭。

否则即便是再慢的中子,也具有对材料或人体生物的破坏性。

光是处理中子就这么麻烦了,而可控核聚变第一壁材料还要承受高温、氘氚高能粒子、伽马射线、离子污染等各种问题。

即便是通过原子循环技术和辐射隙带构建的材料有着吸收辐射与射线的能力,要寻找到一种能够让中子通过、面对高温、保持自我修复的材料也是一件相当难的事情。

尤其是在排除掉金属材料这一选项后,就更难了。

毕竟非金属材料中能够面对数千度高温的根本就不多。

陶瓷材料算一个、碳材料算一个(石墨、金刚石这些也是碳材料)、复合材料也算,不过这个的种类就繁多了,且只有部分可用。

目前来说,能承受三千摄氏度以上高温的非金属材料,就这些。

而这些材料作为第一壁材料,基本都有各自的缺陷。

所以在听到这位赵教授说他们研发出来的新型材料可能有着应用在第一壁材料上的潜力时,徐川内心是相当惊讶的。

毕竟从他正式下达研究第一壁材料的指令到现在,时间也就两三个月而已。

哪怕是他一开始就指明了方向和相关的方法,也有着川海材料研究所那边的材料计算数学模型的辅助,这个速度也有些太快了。

.......

花费了十来分钟的时间,徐川认真的将手中的数据资料完整的看了一遍。

从手中的资料来看,赵光贵他们研发出来的是一种碳纳米管 碳纤维增强碳化硅 氧化铪基复合材料。

从属性上来看,类似于耐高温复合陶瓷材料,具备大部分耐温高温陶瓷材料的性质。

不同的点在于因为主体结构是碳纳米管与碳纤维增强碳化硅材料的原因,在导热系数方面相对比陶瓷材料得到了不小的提升。

普通的陶瓷材料的导热系数在0.5-1W/m·K之间,而这种复合材料,导热系数在52.11W/m·K,超过了石墨的40W/m·K。

当然,50W/m·K的导热系数,在一些特种陶瓷里面并不算什么。

比如碳化硅(SiC)陶瓷基材导热率能达到120-490 W/m·K,氮化铝(AlN)陶瓷基材的导热率为170-230 W/mK。

这两种陶瓷基材算是陶瓷基材中导热系数最好的了,不过它们的耐高温程度都不够。

绝大部分的碳化硅一般超过1600度就会融化,而氮化铝最高虽然可稳定到2200度,但依旧达不到3000度的要求。

当然,如果仅仅是温度不达标的话,通过水冷设备还是可以维持住温度的,关键点在于中子辐照对于金属键的破坏。

氧化铝虽然是陶瓷材料,但铝金属键是核心支撑键,中子辐照对金属键的破坏尤为明显。

至于碳纳米管材料和碳纤维材料,虽然在无氧的环境中能抗住超过三千度的温度,但单纯的碳材料对氘氚原料的吸收问题太严重了。

导致纯碳材料,如石墨烯、碳纳米管很难应用到第一壁上面。

至于赵光贵他们研究出来的这种增强复合型材料,在无氧的环境下,能抗住超过三千四百摄氏度的超高温。

这一数值,如果是在纯金属中进行比较,也就钨能比得上了。

如果是合金的话,距离五碳化四钽铪(Ta4HfC5)4215摄氏度的熔点还是有一些距离的。

不过应用在可控核聚变反应堆的第一壁上,足够了。

最关键的在于对氘氚原料的吸收,这一点从检测结果上可以看出,这种复合型材料,除非是携带高能的氘氚离子失控撞击到材料表面,否则并不会与材料本身结合反应。

......

将手中的文档放在桌上,徐川抬头看向赵光贵,感兴趣的问道:

“有点意思,从材料的横切面电镜图来看,似乎是原子循环技术和辐射隙带结构导致碳纳米管与氧化铪基材出现了结合,碳纳米管的化学键取代了氧化铪基材的氧化学键,形成了独特排序的碳纳米管·铪晶体结构。”

本小章还未完~.~,请点击下一页继续阅读后面精彩内容!

喜欢大国院士请大家收藏:(www.zuoyankanshu.com)大国院士左眼看书更新速度全网最快。

左眼看书推荐阅读: 我在圣斗士世界种田全球复苏:从将军庙开始签到神印:趁采儿青涩,忽悠她做老婆三国开局斩关羽火影:我能吞噬一切血脉大唐:开局绑了李世民九功舞之钧天舞四合院之我和于莉青梅竹马深海古神绝不死于陆地之上怪他过分宠溺红楼贾琼和顶流哥哥上求生综艺后我在80年代当村长西游:大王,求求你出山吧活玉生香王者荣耀之全能高手直播之这个主播不对劲归尘记神仙聊天群我真的不想再当魔法少女了我绝世高人的身份被曝光了鉴宝大宗师重生后被霸总娇养了纪爷的小祖宗A到爆农家小悍妻致富种田忙全球灾难:签到就变强末世:开局获得红警基地车韦小宝自传你是我的小美好申夫人每天都想跑路漫威:从风鹰铠甲开始保卫之战:第二次世界大战欧洲战事我在海贼世界练武功焰娘婚婚蜜爱凡人飞升录七星彩南有嘉树DC之超凡之子洪荒:开局收凤祖为侍女磨砺88这个演员有点嚣张我这一辈子我全点了掉宝率我从末世归来改变心路,就能改变出路快穿之才不是倒霉鬼娱乐:开局怒怼相亲女生存挑战:从蛮荒开始那年风雪凉
左眼看书搜藏榜: 港综之警队中的狂徒八零年代养娃记全民领主,没有外挂的我只好无敌少年派:手握星辰揽明月冬日不曾有暖阳我在修仙界娶妻长生从作曲人开始的顶流巨星焰娘娱乐圈老干部婚婚蜜爱偷渡诸天从四合院走起谍影凌云从第九峰开始成仙每天被迫给病娇反派当舔狗西游:连中三元,五指山炸了!龙族:从斗破归来的路明非全球神祇:我的信徒是赛亚人普普通通炼气士我在东京做美食的日常诡异志怪:从养生拳大成开始全球复苏:从将军庙开始签到朕的大明帝国梦中强吻女帝,被找上门了怎么办凡人飞升录多子多福,从娶妻开始长生!大唐破坏王弟,你再闯祸,哥哥我就要篡位了巫师的无限旅途影视:在诸天万界随心所欲我交朋友就变强轮回:这剧情我熟七星彩我的娶妻修行人生人在东京:和校花一起写网文武学面板:氪金成圣喜剧从成为美少女师傅展开星海求生:从一艘小破船开始变强攻略失败后,我在四爷后院摆烂静默绝界我真的是死灵巫师重生金融之路一人之下,一念蛊仙我在漫威掀起医学奇迹斗罗:我的武魂喷火龙淘汰当天,我和天后结婚了魂天帝的萧炎养成计划我在青石潭底建龙宫洪荒:都一个阐教的,内卷什么?从平凡的世界开始当农民万民之尊
左眼看书最新小说: 重生末世:开局中奖3000万武道成圣:从皇家禁地开始破产大明星密特拉之契燕辞归模拟人生:我为众生开仙路我在仙界富甲一方四合院之赤脚医生诸天从四合院启航蒸汽之国的爱丽丝半岛小行星现代咸鱼生存指南凡人:掩月宗的日常大明英华联盟:开局唢呐,送走了周姐呆妹四合院之饮食男女我对念能力超有兴趣从海贼开始万界模拟全网黑后,她回乡下养老了我组建了最强剑客集团四合院之激情岁月期待在异世界我的诡异人生我加载了怪谈游戏谍海孤雁漫威逆转金刚狼不当对照组,我上家庭综艺爆红了穿成幻蝶后,我苟成了斗罗团宠预判之王凌爷家的影后老婆飒爆了重归黄金年代亿人聊天群御兽从零分开始大明:我,调教木匠皇帝LOL:暗裔剑魔想夺舍我烛龙以左大商监察使分手之后,校花追着我还债霸武长生武道:我有一具玄水蛇分身位面:秘境使徒诸天金钱这个明星有点冷门星河超越者人在斗罗,我是龙神之子遮天:开局帝尊邀我成仙奶爸学园斗罗:唐门大小姐她飒爆全场这个明星不加班带着祖符穿越斗破